bonsoon's blog |
| latest | about | random
# 2025-02-23 some integrals relating to Bessel polynomials. notes: [[0-journal/---files/2025-02-25 some contour integrals.pdf|2025-02-25 some contour integrals]] This morning I decided to work out integrals of the form $$ \int_{0}^{\infty} \frac{\cos(x)}{(x^{2}+1)^{n}} dx. $$It is not particularly "hard", just involves contour integrals with an upper semi-circle contour and finding residues correctly, we can obtain $$ \int_{0}^{\infty} \frac{\cos(x)}{(x^{2}+1)^{n}} dx= \frac{\pi}{2^{n}e} \frac{1}{(n-1)!}\sum_{k=0}^{n-1} {n-1 \choose k} \frac{n^{\underline{k}}}{2^{k}} $$where $$ n^{\underline k} :=n(n+1)(n+2)\cdots(n+k-1) $$is the rising factorial of $k$ terms. Then I decided to look into that summation term. > As it turns out, this is also for $n \ge 1$ $$ \int_{0}^{\infty} \frac{\cos(x)}{(x^{2}+1)^{n}} dx = \frac{\pi}{e} \frac{1}{2^{n}(n-1)!}B_{n-1}, $$with $$ B_{0} = 1, B_{1} = 2, B_{n} = (2n-1)B_{n-1}+B_{n-2}. $$ And similarly, we have >For $n \ge 1$, $$ \int_{0}^{\infty} \frac{x \sin(x)}{(x^{2}+1)^{n}}dx = \frac{\pi}{e} \frac{1}{2^{n}(n-1)!}B_{n-2} $$ with $$ B_{-1} = 1, B_{0} = 1, B_{n}=(2n-1)B_{n-1} + B_{n-2} $$ Curiously, $$ \int_{0}^{\infty} \frac{\cos(x)}{x^{4}+1} dx = \frac{\pi}{2 e^{1 / \sqrt{2}}}\sin\left( \frac{1}{\sqrt{2}} + \frac{\pi}{4} \right). $$ If we calculate this sum $$ \sum_{k=0}^{n-1} {n-1 \choose k} \frac{n^{\underline{k}}}{2^{k}} $$for a few values of $n$, we get the sequence $$ 2, 7, 37, 266,\ldots $$which from OEIS reveals these are the Bessel polynomials $y_{n}(x)$ evaluated at $x=1$, in particular $$ y_{n-1} (1) = \sum_{k=0}^{n-1} {n-1 \choose k} \frac{n^{\underline{k}}}{2^{k}} $$where $y_{n}(x)$ satisfies the recurrence $$ y_{0}(x) = 1, y_{1}(x) = 1+x, y_{n}(x) = (2n-1)x y_{n-1}(x) + y_{n-2}(x). $$If we denote $B_{n} = y_{n}(1)$, then the $B_{n}$ satisfies $$ B_{0} = 1, B_{1} = 2, B_{n} = (2n-1)B_{n-1}+B_{n-2}, $$and $$ \int_{0}^{\infty} \frac{\cos(x)}{(x^{2}+1)^{n}} dx = \frac{\pi}{2^{n}e} \frac{1}{(n-1)!}B_{n-1}, $$with $(B_{0},B_{1},B_{2},\ldots) = (1,2,7,37,266,2431,27007,\ldots)$. These $(B_{n})$ numbers also counts the following: $B_{n}$ is the number of ways to partition the numbers $\{1,\ldots,k\}$ into $n$ groups, where each group has exactly 1 or 2 many elements, for all $k$ where $n\le k \le 2n$. I should write out the bijection there.